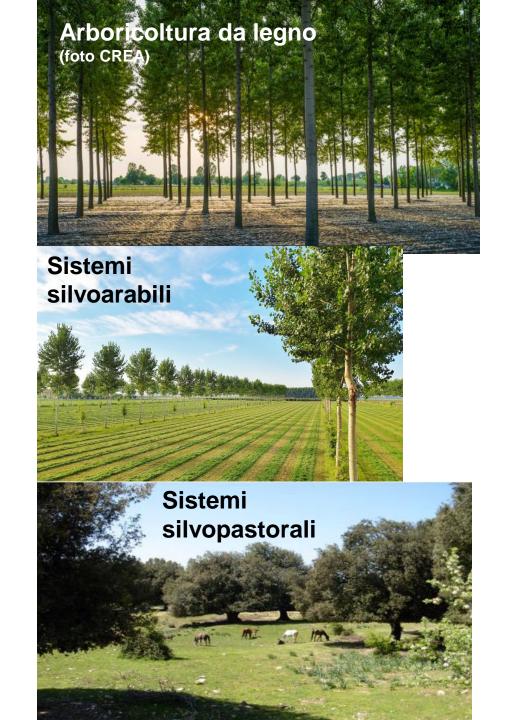


"Alberi Fuori Foresta: esempi di agroforestazione per il Lazio"

Pierluigi Paris

- -CNR Istituto di Ricerca sugli Ecosistemi Terrestri
- -AIAF
- -Sisef-GdL Arb.da Legno ed Agrosevicoltura
- -G.E.T. Oss.Naz.Pioppo MASAF

Progetti di ricerca e Gruppi di lavoro sull'Agroselvicoltura:



- CE Horizon 2020 AF4EU (2023-25) https://af4eu.eu/
- EC INNO4CFIs (2024-26) https://inno4cfis.eu/
- A.I.A.F., Associazione Italiana di Agroforestazione
- G.E.T.- Oss. Nazionale Pioppo- Masaf

Sommario

- Finanziamenti pubblici CSR-PAC per arboricoltura da legno (AdL) e sistemi agroforestali;
- L'esempio dell'Az. Sasse Rami per la pioppicoltura ed i sistemi silvorabili del pioppo;
- Specie alternative al pioppo: paulownia, eucalitti e robinia;
- Sistemi silvopastorali: benefici per il comfort termico bestiame al pascolo;
- Materiale d'impianto per sistemi silvopastorali;
- Conclusioni

Finanziamenti P.A.C.- Complementi di Sviluppo Rurale (2023-27)

SRD05 - IMPIANTI forestazione/imboschimento e sistemi agroforestali su terreni agricoli

Azione	Spesa ammissibile massima per impianto ad ettaro*
SRD 05.1) Impianto di imboschimento naturaliformi	15.000
SRD 05. 2) Impianto di arboricoltura	15.000
SRD 05.3) Impianti di sistemi agroforestali	
3.1) Impianti silvoarabili	5.000
3.2). Impianti silvopastorali	4.000

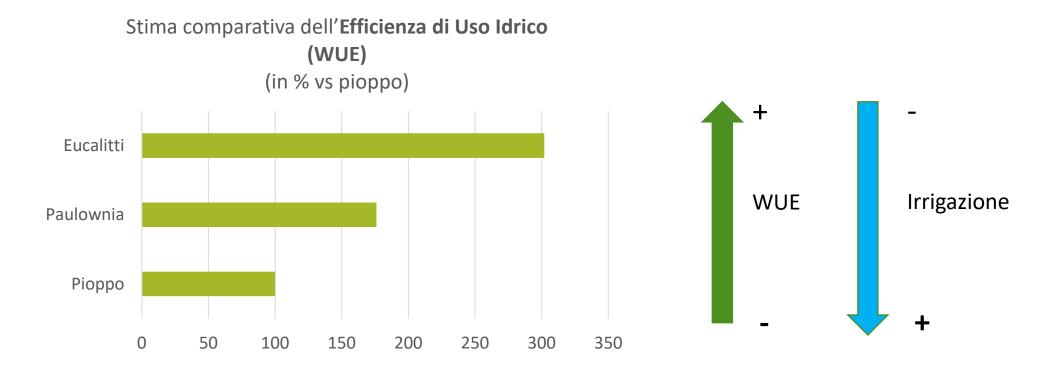
Solo 5 Regioni:
Piemonte,
Toscana, Veneto,
Abruzzo e Puglia

AdL: + max 1000 € ha⁻¹ anno⁻¹ mancato reddito agricolo + cure colturali max 1500 € ha⁻¹ anno⁻¹

Agroselvicoltura: + max 800-1500 € ha⁻¹ anno⁻¹ (5-8 anni)

Confronto di cloni ibridi di pioppo MSA (Maggiore Sostenibilità Ambientale) in Piantagione vs Sistema Silvoarabile

Dal 2018



AgroforestAZIONE

- •8 febbraio colloquio in Corte Benedettina a Legnaro --> https://www.youtube.com/watch?v=VcQaFHhZ3po&t=4s
- •1 marzo visita in campo https://www.youtube.com/watch?v=rN4Bojs-00E&t=7667s

SPECIE ESOTICHE, alternative ai pioppi, a rapido accrescimento per Arb. Legno e Sistemi silvoarabili

- Cloni ibridi di paulownia (Paulownia spp.)
- Cloni ibridi di eucalipto (Eucalyptus spp.)
- Cloni di robinia (Robinia pseudoacacia L.) (in asciutto)

^{1.} Thevs et al. 2025. Water consumption of a Paulownia plantation in an arid climate in Kyrgyzstan, Central Asia. Central Asia. J. of Water Res., 11(1), 27-46. DOI: 10.29258/CAJWR/2025-R1.v11-1/27-46.eng.; 2. Thevs, N et al 2021. Water productivity of tree wind break agroforestry systems in irrigated agriculture — An example from Ferghana Valley, Kyrgyzstan; Trees, Forests and People, 4, 100085. DOI: 10.1016/j.tfp.2021.100085. 3. Thevs N et al. ,2021. Water Productivity of Poplar and Paulownia on Two Sites in Kyrgyzstan, Central Asia. J. Water Resource and Protection, 13, 293-308. DOI: 10.4236/jwarp.2021.134018. 4. Alaejos et al, 2023. Biomass Production and Quality of Twelve Fast-Growing Tree Taxa in Short Rotation under Mediterranean Climate. Forests 2023, 14, 1156. https://doi.org/10.3390/f14061156

Ibridi commerciali di paulownia

Società/Gruppo	Clone	x Specie	Aree di piantagioni
In Vitro SL (Spagna	In Vitro 112	elongata x fortunei	Spagna
Cotevisa (Spagna)	Cotevisa2	elongata x fortunei	Spagna, Slovacchia ed Ucraina
Wonder K Green (Italia)	Cotevisa2	,	Italia, 1000 ha
P. Germany	Cotevisa2		Germania
P. Cresce in Rete	Bio125	elongata x fortunei	Italia (?)
P. Romagna			O
P. Piemonte (no profit)			U
Future Green (Puglia)	In Vitro 112	elongata x fortunei	<i>u</i>
P. Italia (Tolmezzo, UD)	FTK 6-20-11; FT 6-20; FTU, Ultra 6-20	tomentosa x kawaikami x fortunei; tomentosa x fortunei)	U
Roana Cereali (Walter Roana)	PhoenixOne	elongata x fortunei	o
Battistini Vivai	Bio125	elongata x fortunei	0

Cavezza (Modena) 1,45 ha 6 anni DBH= 25,4 cm Htronco: 4,5 m 143 m³/ha

Corinaldo (Modena)
210 m
1,82 ha
9 anni, secondo
ciclo
DBH= 25 cm
Htronco: 4,5 m
140 m³/ha

Regione Marche

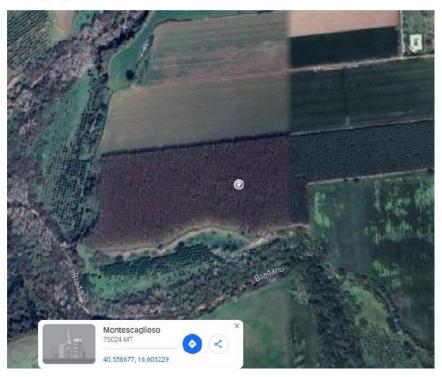
Comune di Castelbellino (AN)

Altezza s.l.m. 210 m.

Impianto di 6 anni

Coordinate geografiche 43.498546 13.146013

1 ha circa 6 anni DBH= 25,7 cm Htronco: 4,5 m 146 m³/ha


Regione Basilicata

Comune di Montescaglioso (MT)

Altezza s.l.m. 63 m.

Impianto di 8 anni

Coordinate geografiche 40.558680 16.605301

10,15 ha 8 anni DBH= 27,5 cm Htronco: 5,5 m 202 m³/ha Veneto: Esempi negativi d'uso della paulownia in terreni da pioppicoltura con falda troppo superficiale per la paulownia

Eucalitti

- Circa 55.000 ha
- Potenziale espansione delle aree idonee alla coltivazione per effetto del cambiamento climatico;
- Insegnamento dal passato: adottare tecniche di coltivazione specifiche dell'arboricoltura da legno, realizzabili solo su piccole superfici e con materiale di qualità;
- 2 cloni registrati nel sistema Plant Brider's Right dal CREA-FL;
- Le sfide: impatti sull'ambiente (invasività), vulnerabilità a fattori biotici ed abiotici; sistemi a maggiore produttività nelle aree più vocate.

Impianto CREA FL di Roma

Cloni: Velino, Viglio, Sirente

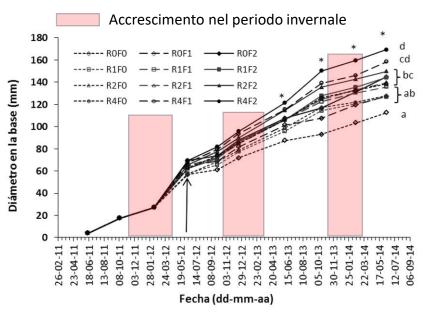
Densità: 800 piante ettaro

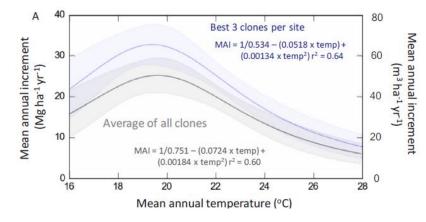
Età: 3 anni

D₁₃₀ medio: **9,00 cm**

H media: 9,00 m

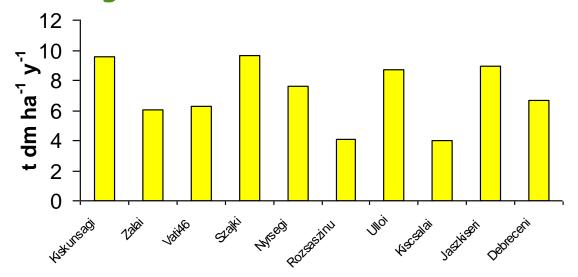
Eucalitto: India - Penisola iberica - Sud America)


Spagna: clima med. (540 mm;16 °C)


- in 3 anni DBH: 17-12 cm
- Acc. DBH in periodo invernale

Brasile Sud - clima subtropicale:

• a 16°C ca. 30 m³ ha/anno


https://www.socialnews.xyz/2023/11/08/up-to-come-up-with-its-first-agroforestry-policy/

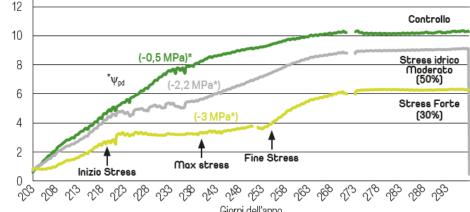
Fernández Martínez, M. et al, Cuad. Soc. Esp. Cienc. For. 42: 91-102 (2016)

Dan Binkley et al 2020 https://doi.org/10.1016/j.foreco.2020.117953

Robinia pseudoacacia

Cloni Ungheresi-Stress Idrico ed Invasività

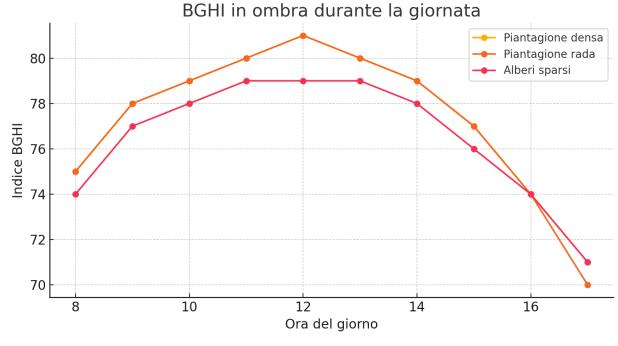
Research Article doi: 10.3832/ifor1526-009 vol. 9, pp. 822-828 accrescimento diametrale (mm)

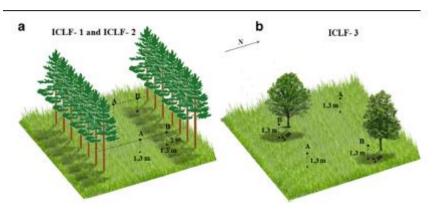

Assessing escapes from short rotation plantations of the invasive tree species *Robinia pseudoacacia* L. in Mediterranean ecosystems: a study in central Italy

Roberto Crosti (1-2), Emiliano Agrillo (3), Lorenzo Ciccarese (4), Riccardo Guarino (5), Pierluigi Paris (6), Anna Testi (3) Black locust (Robinia pseudoacacia L.) is a fast growing tree species native to temperate North America, and widely diffused and naturalized in Europe. It is one of the candidate species for establishing bioenergy plantations on marginal lands in temperate and sub-Mediterranean regions. This potential is in contrast to its well-known invasive habit, leading to a potential damage to

Fig. 2 - Robinia da biomassa, livelli d'irrigazione

C: Controllo (terreno al 100% della capacità di campo-c.d.c.); SM: Stress Medio (50% c.d.c.); SE = Stress Elevato (30% c.d.c.). Max stress: minimi valori di potenziale idrico fogliare di base (Pd, in MPa) raggiunto in ciascun trattamento. Da Mapelli et al., 2000)





Sistemi Silvopastorali in Ambiente Mediterraneo:

Importanza degli Alberi Camporili per il confort termico del bestiame

Int J Biometeorol (2016) 60:1933-1941 DOI 10.1007/s00484-016-1180-5

ORIGINAL PAPER

Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest

Nivaldo Karvatte Jr. 1 · Elcio Silvério Klosowski 2 · Roberto Giolo de Almeida 3 · Eduardo Eustáquio Mesquita 2 · Caroline Carvalho de Oliveira 4 · Fabiana Villa Alves 3

Materiale d'impianto per sistemi silvopastorali: criteri generali e sperimentazione

Trantine piccole	Materiale più sviluppato
Costi inferiori di acquisto e messa a dimora	Sfuggono più facilmente alla competizione erbacea
Minore stress da trapianto	Meno vulnerabili a danni da fauna selvatica o bestiame
X Crescita iniziale lenta	X Maggior costo e rischio di stress idrico
X Più suscettibili a competizione e danni	X Richiedono maggiori cure iniziali

Fattore	Sopravvivenza (%)	Crescita (DBH finale)
Straw mulch	94	Tendenzialmente più alta
Stone mulch	74	Intermedia
No mulch (controllo)	74	Più bassa
Diametro iniziale >10 mm	80	Significativamente più alta
Diametro iniziale <10 mm	80	Più bassa

Agroforest Syst (2014) 88:935–946 DOI 10.1007/s10457-014-9737-y

Restoring silvopastures with oak saplings: effects of mulch and diameter class on survival, growth, and annual leaf-nutrient patterns

M. N. Jiménez · J. R. Pinto · M. A. Ripoll · A. Sánchez-Miranda · F. B. Navarro

Conclusioni

- L'agroforestazione è una risorsa da valorizzare maggiormente per l'agricoltura del Lazio.
- Sasse Rami è un esempio virtuoso di sperimentazione efficace.
- Specie diverse mostrano adattabilità e potenzialità specifiche.
- Servono politiche pubbliche più diffuse e mirate per questi sistemi.

Grazie per l'attenzione pierluigi.paris@cnr.it

Questa presentazione è di mia piena responsabilità e non rappresenta assolutamente le posizioni ufficiali delle Istituzioni, Ass./Soc. scientifiche e Gruppi di Lavoro per cui lavoro e/o collaboro